WELL CONSTRUCTION AND TEST REPORT
CITY OF GILLETTE
MADISON PIPELINE PROJECT: TEST WELL #1
FUTURE COG MADISON PRODUCTION WELL M-11
MUNICIPAL WATER SUPPLY

WELL PERMIT NO. U.W. 195671
CITY OF GILLETTE PROJECT NUMBER
07EN58 - CONTRACT #1
AUGUST 2013

Prepared by:
Burns & McDonnell
9785 Maroon Circle, Suite 400
Centennial, CO 80112

MORRISON MAIERLE, INC.
1 Engineering Place
Helena, MT 59602

Prepared for:
City of Gillette
P.O. Box 3003
Gillette, WY 82717-3003
PREFACE

The Gillette Madison Pipeline Project was funded by the State of Wyoming with a local match from Campbell County. State funds were administered by the Wyoming Water Development Commission with construction sponsored by the City of Gillette.

Civil engineering design services were provided by Burns & McDonnell as lead consultant with hydrogeologic services and other engineering design services provided by Morrison-Maierle, Inc. as a subconsultant.

Burns & McDonnell provided consulting services from their office in Centennial, CO.

Morrison-Maierle, Inc. provided engineering design and construction management services from their office in Gillette, WY with contract administration and engineering support from their Billings, MT office. Morrison-Maierle, Inc. geologic services were provided from their offices in Helena and Bozeman, Montana.

The City of Gillette Test Well #1 site was one of two test well sites selected for initial testing of potential yield and water quality from the Madison aquifer in a new area, outside of the existing City of Gillette Madison Well Field that has been in operation since the early 1980s.
Table of Contents

1. INTRODUCTION
 1.1 Permits and Certificate of Survey ... 1
 1.2 Consultants, Contractors and Support Services 5
 1.3 Start and Completion Dates .. 6

2. GEOLOGY
 2.1 Hydrogeologic Framework ... 7
 2.2 Formation Tops .. 10

3. CONSTRUCTION
 3.1 Draw Works ... 11
 3.2 Derrick ... 12
 3.3 Power Unit ... 12
 3.4 Support Equipment ... 12
 3.5 Air Package ... 13
 3.6 Drilling Methods
 3.6.1 Flooded Reverse Method ... 13
 3.6.2 Direct Air Rotary Method .. 17
 3.7 Drilling Fluids ... 24
 3.8 Construction History
 3.8.1 36-Inch Surface Conduit .. 25
 3.8.2 24-Inch Surface Casing ... 25
 3.8.3 16-Inch Pumping Chamber ... 31
 3.8.4 10-3/4 Inch Intermediate Casing 32
 3.8.5 7-Inch Intermediate Casing .. 35
 3.8.6 6-1/4 inch Open-Hole Completion 38
 3.9 Borehole, Casing and Cement Summary ... 44
 3.10 Plumbness and Alignment .. 44

4. ACID FRAC STIMULATION ... 52
 4.1 Acid Frac Equipment .. 55
 4.2 Packer Settings ... 55
 4.3 Post-Acid Treatment Water Quality .. 63
5 YIELD AND DRAWDOWN TESTS
5.1 Barometric Response ... 66
5.2 Test Pump Equipment ... 71
 5.2.1 ESP TN35000 12-Stage Pump 71
 5.2.2 ESP TP1700 8-Stage Pump Curves 74
 5.2.3 Logging Equipment and Data Collection 77
5.3 Pre-Frac Pumping Tests ... 79
 5.3.1 Pre-Frac Stepped Rate Test 79
 5.3.2 Pre-Frac Constant Rate Test 80
 5.3.3 Aquifer Parameters ... 84
5.4 Post-Frac Pumping Tests .. 85
 5.4.1 Post-Frac Stepped Rate Test 85
 5.4.2 Post-Frac Constant Rate Test 88
 5.4.3 Stabilized Drawdown .. 89
 5.4.4 Post-Frac Observation Well Response 90
5.5 Post-Frac Compared to Pre-Frac 94
5.6 Well Loss Drawdown ... 95
6 WATER QUALITY .. 95

LIST OF APPENDICES

Appendix A: Permits
Appendix B: Certificate of Survey
Appendix C: Drill Cutting Lithologic Log and Geologic Classification
Appendix D: Photographs of Drilling Equipment
Appendix E: Water Chemistry – Laboratory Analytical Reports

LIST OF FIGURES

Figure 1: Location of Test Well Sites #1 and #2 2
Figure 2: Location of Test Well #1 on drill pad 3
Figure 3: Well completion drawing for Test Well #1 4
Figure 4: Log of sediment interval from 2313 to 2348 feet 36
Figure 5: Airlift discharge versus depth during drilling 41
Figure 6: Electrical resistivity logs of principle Madison aquifer section 43
Figure 7: Polar view of Test Well #1 drift and deviation 46
Figure 8: Drift and deviation in the plane of drift. ... 47
Figure 9: Drift and deviation in the east-west plane of view. 48
Figure 10: Drift and deviation in the north-south plane of view. 49
Figure 11: Drift and deviation compared to allowable 1-degree drift. 50
Figure 12: Three-dimensional projection view of drift and deviation. 51
Figure 13: East-west deviation vs. north-south deviation. 52
Figure 14: Acid frac surface treatment pressure and flow rate. 53
Figure 15: Bottom hole pressure (BHP) and pressure exceeding nominal packer rating. .. 54
Figure 16: Comparison of pre-frac and post-frac well performance. 54
Figure 17: TDS concentrations during 1600-gpm post-acid treatment aquifer test. 65
Figure 18: Pre-test static water level change versus barometric pressure change. 66
Figure 19: Change in groundwater versus change in barometric pressure. 67
Figure 20: Barometric fluctuations compared to groundwater levels. 68
Figure 21: Static water level and barometric fluctuation compared to Seattle tide. 69
Figure 22: Change in static water level versus change in barometric pressure. 70
Figure 23: ESP TN 35000 pump performance summary. .. 73
Figure 24: ESP TN 35000 test pump VFD performance curves. 73
Figure 25: ESP TP 1700 pump performance summary. .. 74
Figure 26: ESP TP 1700 test pump VFD performance curves. 75
Figure 27: Pump performance curve compared to observed performance. 75
Figure 28: Calibrations report for pumping test flow meter. 78
Figure 29: Time-drawdown plots of pre-frac stepped rate test of Test Well #1. 79
Figure 30: Pre-frac Hantush-Beierschenk solution for Test Well #1. 80
Figure 31: Pre-frac 900-gpm constant rate test of Test Well #1. 81
Figure 32: Semilogarithmic plot of Theis type curve. .. 82
Figure 33: Theis model output for 900 gpm compared to field data. 83
Figure 34: Pre-frac response of Test Well #2A to 900-gpm test of Test Well #1. 84
Figure 35: Post-frac stepped rate test of Test Well #1. .. 86
Figure 36: Well loss coefficient solutions for pre- and post-frac stepped rate tests of Test Well #1. ... 86
Figure 37: Cooper-Jacob solution for 1600-gpm post-frac test of Test Well #1. 88
Figure 38: Theis model output compared to 1600-gpm test response. 89
Figure 39: Stabilized drawdown at end of 1600-gpm constant rate test of Test Well #1. ... 90
Figure 40: Response of Test Well #2A to 1600-gpm pumping rate at Test Well #1. 91
Figure 41: Hydrograph of Test Well #1 response to 1600-gpm pumping in Test Well #2A. .. 93
Figure 42: Comparison of pre- and post-frac drawdown and recovery. 94
Figure 43: Water quality data from air lift samples during drilling. 96
Figure 44: Iron and TDS concentrations during 1600-gpm, post-frac aquifer test. 97
LIST OF TABLES

Table 1: Depths to tops of formations penetrated by Test Well #1. ...11
Table 2: Drilling fluid hauled off during drilling 14-3/4 inch pilot hole to 1515 feet..................28
Table 3: Deviation from vertical measured in 14-3/4 inch pilot hole from 70 to 1515 feet.................................29
Table 4: Deviation from vertical in 14-3/4 inch hole for 10-3/4 casing.................................32
Table 5: 7-inch casing tally...35
Table 6: Summary of borehole, casing and cement for Test Well #1...............................45
Table 8: Chemistry of water samples collected during air rotary drilling...............................63
Table 9: Chemistry of water samples before and after acid frac treatment.................................64

LIST OF PHOTOGRAPHS

Photo 1: Five air compressors and two boosters for air rotary drilling............................14
Photo 2: Manifold connecting compressors to boosters for air rotary drilling..................14
Photo 3: Compressors and manifold..15
Photo 4: Manifold used to direct air from boosters to Kelly hose on drill rig......................15
Photo 5: View of surface conduit at Site #2 with mud pit line coming in from right and 24-inch casing hanging in hole..16
Photo 6: Cyclone and shale shakers without auxiliary pit..18
Photo 7: Shale shakers dumping samples into auxiliary pit..18
Photo 8: Auxiliary mud pit with cuttings and sand and silt separator discharge..................19
Photo 9: Rotating head..20
Photo 10: Dump line and valve...20
Photo 11: View of discharge valves to cyclone and dump line..21
Photo 12: View of dump line valve and auxiliary pit outlet valve....................................21
Photo 13: View toward downstream end of dump line...22
Photo 14: Dump line bypass discharge with small yield of water and surging......................23
Photo 15: Dump line bypass discharge with large yield of water.....................................23
Photo 16: Bucket auger rig drilling 44-inch surface conduit hole....................................26
Photo 17: 36-inch surface conduit installation in 44-inch borehole...................................26
Photo 18: Cementing Test Well #1 surface conduit..27
Photo 19: Cement in annulus of surface conduit..27
Photo 20: 32-inch reamer..28
Photo 21: Faulty bearings on 32-inch reamer...30
Photo 22: Cementing shoe and casing guide with three sets of cementing windows..........33
Photo 23: Cementing window in 16-inch casing guide below cement shoe......................33
Photo 24: 16-inch casing hanging on gussets cut into 24-inch surface casing.....................34
Photo 25: Cement pumper and bulk truck cementing 16-inch casing................................34
Photo 26: 7-inch casing with cement window and castellated bottom..............................37
Photo 27: Mat shoe and collar in casing string..37
Photo 28: Air manifold fittings after overpressure and ruptured lines..............................39
Photo 29: Ruptured high-pressure air hose and soot on snow..39
Photo 30: Soot-covered snow and manifold fitting missing blown-off air hose.....................40
Photo 31: Volumetric measurement of airlift discharge during drilling. 41
Photo 32: Packer surface inflation pressure at 1480 psi during inflation 56
Photo 33: Frac equipment arriving at site. .. 56
Photo 34: New V-12 powered 2000-hp high-pressure pump .. 57
Photo 35: Overview of frac equipment setup .. 57
Photo 36: Frac tanks and acid trucks .. 58
Photo 37: Mixing truck hoses to frac tanks and acid trucks .. 59
Photo 38: Ground crew connecting high pressure lines to packer tubing 59
Photo 39: Well-head plumbing for frac job .. 60
Photo 40: Pressure transducer on high-pressure line for frac job 60
Photo 41: Standing by in control truck prior to acid frac stimulation 61
Photo 42: Operator interface with digitally controlled pumps ... 61
Photo 43: Control truck monitor for frac job supervision; STP = 1550 psi at 66.2 BPM. ... 62
Photo 44: ESP TN35000 pump strainer with ingested wire ... 72
Photo 45: Ingested wire in bottom bowl assembly of test pump .. 72
Photo 46: VFD secondary transformer data plate ... 76
Photo 47: Limestone cuttings developed from Test Well #1 after acid-frac treatment 87