WELL CONSTRUCTION AND TEST REPORT

CITY OF GILLETTE

MADISON PIPELINE PROJECT: TEST WELL #2 & #2A

FUTURE COG MADISON PRODUCTION WELL M-12

MUNICIPAL WATER SUPPLY

WELL PERMIT NO. U.W. 195672

CITY OF GILLETTE PROJECT NUMBER

07EN58 - CONTRACT #1

JULY 2013

Prepared by:

Burns & McDonnell
9785 Maroon Circle, Suite 400
Centennial, CO 80112

MORRISON MAIERLE, INC.
1 Engineering Place
Helena, MT 59602

Prepared for:

ENERGY CAPITAL OF THE NATION
CITY OF GILLETTE, WYOMING

City of Gillette
P.O. Box 3003
Gillette, WY 82717-3003
PREFACE

The Gillette Madison Pipeline Project was funded by the State of Wyoming with a local match from Campbell County. State funds were administered by the Wyoming Water Development Commission with construction sponsored by the City of Gillette.

Civil engineering design services were provided by Burns & McDonnell as lead consultant with hydrogeologic services and other engineering design services provided by Morrison-Maierle, Inc. as a subconsultant.

Burns & McDonnell provided consulting services from their office in Centennial, CO.

Morrison-Maierle, Inc. provided engineering design and construction management services from their office in Gillette, WY with contract administration and engineering support from their Billings, MT office. Morrison-Maierle, Inc. geologic services were provided from their offices in Helena and Bozeman, Montana.

The City of Gillette Test Well #2 site was one of two test well sites selected for initial testing of potential yield and water quality from the Madison aquifer in a new area, outside of the existing City of Gillette Madison Well Field that has been in operation since the early 1980s.
Table of Contents

1 INTRODUCTION..1
 1.1 Test Well #2 ...1
 1.2 Test Well #2A ..3
 1.3 Permits and Certificate of Survey ..3
 1.4 Consultants, Contractors and Support Services ..6
 1.5 Start and Completion Dates ..7

2 GEOLOGY ..7
 2.1 Hydrogeologic Framework ..8
 2.2 Formation Tops ...11

3 CONSTRUCTION ...13
 3.1 Drilling Equipment ..13
 3.1.1 Draw Works ...13
 3.1.2 Derrick ...14
 3.1.3 Power Unit ...14
 3.1.4 Support Equipment ...14
 3.1.5 Air Package ...15
 3.2 Drilling Methods ...17
 3.2.1 Flooded Reverse Method ...17
 3.2.2 Direct Air Rotary Method ...19
 3.3 Drilling Fluids ...20

3.4 Construction History ..21
 3.4.1 Road Construction ..21
 3.4.2 Test Well #2 ..22
 3.4.2.1 36-Inch Surface Conduit ..22
 3.4.2.2 24-Inch Surface Casing ...23
 3.4.2.3 16-Inch Pumping Chamber (Abandoned) ...25
 3.4.3 Test Well #2A ...33
 3.4.3.1 36-Inch Surface Conduit ..33
 3.4.3.2 24-Inch Surface Casing ...33
 3.4.3.3 Test Well #2A 16-Inch Pumping Chamber41
 3.4.3.4 10-3/4 Inch Casing to Top of Madison ..44
3.4.3.5 9-7/8 Inch Open Hole in Madison Aquifer ..50
3.4.3.5.1 Air Rotary Drilling ...50
3.4.3.5.2 Air Lift Discharge Rate ...60
3.4.3.6 Identification of Bottom of Madison Aquifer Strata62
3.5 Borehole, Casing and Cement Summary ...69
3.6 Plumbness and Alignment ...70

4 DEVELOPMENT BY HYDRAULIC FRACTURING WITH ACID.77
4.1 Acid-Fracturing Equipment ...77
4.2 Hydraulic Fracturing with Acid ...78
4.3 Post-Acid Treatment Water Quality ..86
4.4 Result of Stimulation ...87

5 YIELD AND DRAWDOWN TESTS ..98
5.1 Pre-Test Monitoring ...98
5.2 Test Pump Equipment ...102
 5.2.1 ESP TP1700 8-Stage Pump Curves ...102
 5.2.2 ESP TP1700 Performance ...103
 5.2.3 ESP TN35000 12-Stage Pump ..104
 5.2.4 Test Pump Assembly ..105
 5.2.5 Logging Equipment and Data Collection106
5.3 October 2012 Pumping Test ...113
5.4 November-December 2012 Pumping Tests115
 5.4.1 Post-Acid Stepped Rate Test ..115
 5.4.2 Post-Acid Constant Rate Test ..118
 5.4.3 Aquifer Hydraulic Parameters ..133

6 WATER QUALITY ...134

APPENDIX A: Drill Cutting Log and Geologic Classification Test Well #2
 (abandoned) ...A-1
APPENDIX B: Drill Cutting Log and Geologic Classification Test Well #2A ..B-1
APPENDIX C: Permits for Test Well Site #2 (M12)C-1
APPENDIX D: Certificates of Survey ..D-1
APPENDIX E: Photographs of drilling equipmentE-1
APPENDIX F: Water Chemistry – Laboratory Analytical ReportsF-1
LIST OF FIGURES

<table>
<thead>
<tr>
<th>Figure</th>
<th>Description</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Figure 1</td>
<td>Location of Test Wells #1 and #2</td>
<td>2</td>
</tr>
<tr>
<td>Figure 2</td>
<td>Locations of Test Wells #2 and #2A on drill pad</td>
<td>4</td>
</tr>
<tr>
<td>Figure 3</td>
<td>Well completion drawing for Test Well #2A</td>
<td>5</td>
</tr>
<tr>
<td>Figure 4</td>
<td>Caliper log of 22-inch upper borehole, COG Test Well #2 on January 5, 2012, prior to attempt to stabilize hole with cement.</td>
<td>30</td>
</tr>
<tr>
<td>Figure 5</td>
<td>Air lift yield versus air lift pumping time (drilling time)</td>
<td>63</td>
</tr>
<tr>
<td>Figure 6</td>
<td>Air lift yield versus length of open borehole</td>
<td>64</td>
</tr>
<tr>
<td>Figure 7</td>
<td>Air lift yield per foot of borehole versus length of open borehole</td>
<td>65</td>
</tr>
<tr>
<td>Figure 8</td>
<td>Short and long normal resistivity logs of open hole in Madison aquifer and underlying strata.</td>
<td>67</td>
</tr>
<tr>
<td>Figure 9</td>
<td>Digital data for Figure 8 logs plotted independently for top of Madison interpretation</td>
<td>68</td>
</tr>
<tr>
<td>Figure 10</td>
<td>Polar view of Test Well #2A drift and deviation</td>
<td>71</td>
</tr>
<tr>
<td>Figure 11</td>
<td>Drift and deviation in the plane of drift</td>
<td>72</td>
</tr>
<tr>
<td>Figure 12</td>
<td>Drift and deviation in the east-west plane of view</td>
<td>73</td>
</tr>
<tr>
<td>Figure 13</td>
<td>Drift and deviation in the north-south plane of view</td>
<td>74</td>
</tr>
<tr>
<td>Figure 14</td>
<td>Drift and deviation compared to allowable 1-degree drift</td>
<td>75</td>
</tr>
<tr>
<td>Figure 15</td>
<td>Three-dimensional projection view of drift and deviation</td>
<td>76</td>
</tr>
<tr>
<td>Figure 16</td>
<td>Summary plot of 11/13/2012 acid stimulation treatment of Test Well #2A</td>
<td>85</td>
</tr>
<tr>
<td>Figure 17</td>
<td>Expanded view of acid stimulation treatment of Test Well #2A</td>
<td>85</td>
</tr>
<tr>
<td>Figure 18</td>
<td>Acid simulation injection rates and volumes</td>
<td>86</td>
</tr>
<tr>
<td>Figure 19</td>
<td>TDS concentrations in water pumped after acid treatment of well</td>
<td>87</td>
</tr>
<tr>
<td>Figure 20</td>
<td>Comparison of drawdown before and after acid stimulation</td>
<td>88</td>
</tr>
<tr>
<td>Figure 21</td>
<td>Downhole resistivity log annotated with depths of pictures showing before and after hydraulic fracturing with 15% hydrochloric acid</td>
<td>89</td>
</tr>
<tr>
<td>Figure 22</td>
<td>Pre-test monitoring static water level and barometric pressure</td>
<td>99</td>
</tr>
<tr>
<td>Figure 23</td>
<td>Change in static water level versus change in barometric pressure</td>
<td>100</td>
</tr>
<tr>
<td>Figure 24</td>
<td>Static water level and barometric fluctuation compared to Seattle tide</td>
<td>101</td>
</tr>
<tr>
<td>Figure 25</td>
<td>ESP TP 1700 pump performance summary</td>
<td>102</td>
</tr>
<tr>
<td>Figure 26</td>
<td>ESP TP1700 test pump VFD performance curves</td>
<td>103</td>
</tr>
<tr>
<td>Figure 27</td>
<td>ESP TN 35000 pump performance summary</td>
<td>104</td>
</tr>
<tr>
<td>Figure 28</td>
<td>ESP TN35000 test pump VFD performance curves</td>
<td>105</td>
</tr>
<tr>
<td>Figure 29</td>
<td>Time-drawdown plot of 10/21/2012 stepped rate pumping test response</td>
<td>115</td>
</tr>
<tr>
<td>Figure 30</td>
<td>11/30/2012 stepped rate test time-drawdown plots</td>
<td>116</td>
</tr>
<tr>
<td>Figure 31</td>
<td>Birsoy-Summers plot of 11/30/2012 stepped rate test of Test Well #2A</td>
<td>117</td>
</tr>
<tr>
<td>Figure 32</td>
<td>3-hour specific capacity curve for Test Well #2A</td>
<td>118</td>
</tr>
<tr>
<td>Figure 33</td>
<td>Calibration report for pumping test flow meter</td>
<td>119</td>
</tr>
<tr>
<td>Figure 34</td>
<td>Barometric fluctuation compared to drawdown</td>
<td>122</td>
</tr>
<tr>
<td>Figure 35</td>
<td>Semilogarithmic time-drawdown plot of 1500-gpm test of Test Well 2A</td>
<td>122</td>
</tr>
</tbody>
</table>
Figure 36: Cooper-Jacob solution for transmissivity and determination of well loss... 123
Figure 37: Drawdown plotted versus square root of time for projecting drawdown. ... 123
Figure 38: Hydrograph data from M-1 and M-2... 125
Figure 39: Time-drawdown plot for existing well M-2... 125
Figure 40: Semilogarithmic time-drawdown plot of M-1 response to 1500 gpm at TW#2A. ... 126
Figure 41: Double logarithmic plot of time-drawdown response in well M-1................ 127
Figure 42: Separation of late drawdown into linear and radial flow components......... 130
Figure 43: Projection of drawdown at M-1 to 70 days of pumping Test Well 2A at 1500 gpm. .. 131
Figure 44: Static and pumping water levels for Well M-1 through November 2006... 132
Figure 45: Theis solution for transmissivity and storativity from well M-1 drawdown. 135

LIST OF TABLES

Table 1: Depths to tops of formations penetrated by Test Well #2.............................. 12
Table 2: Depths to tops of formations penetrated by Test Well #2A.......................... 13
Table 3: Summary of borehole, casing and cement for Test Well #2A......................... 69
Table 4: Distribution of water bearing zones in Madison strata penetrated by well..... 98

LIST OF PHOTOGRAPHS

Photo 1: Five air compressors and two boosters for air rotary drilling..................... 15
Photo 2: Manifold connecting compressors to boosters for air rotary drilling.......... 16
Photo 3: Compressors and manifold... 16
Photo 4 (below): Manifold used to direct air from boosters to Kelly hose on drill rig. 17
Photo 5 (left): View of surface conduit with mud pit line coming in from right and 24-inch casing hanging in hole... 17
Photo 6: Cyclone and shale shakers without auxiliary pit.. 18
Photo 7: Shale shakers dumping samples into auxiliary pit................................. 19
Photo 8 (left): Auxiliary mud pit with cuttings and sand and silt separator discharge. 19
Photo 9: Fall River siltstone in surface conduit core hole for Test Well #2 22
Photo 10: Ring and pinion gear for IDECO 23-inch rotary table............................ 24
Photo 11: 32-inch reamer... 34
Photo 12: 32-inch reamer with 17-1/2 inch lead bit... 35
Photo 13: Installation of 24-inch surface casing at Test Well #2A............................ 37
Photo 14: Fabricating casing hanger for 24-inch surface casing......................... 38
Photo 15: 24-inch casing hanging on 36-inch surface conduit............................ 38
Photo 16: Tubing packed off by Bradenhead installed on 24-inch casing............ 39
Photo 17: Cement pumpers connected to tubing in Bradenhead.. 40
Photo 18: Small leak in Bradenhead packing box ... 40
Photo 19: 22-inch reamer with buttons and 14-3/4 inch lead button bit............................. 42
Photo 20: Bottom end of 18-foot long 10-3/4 inch casing guide for float shoe............. 44
Photo 21: Float shoe and cementing windows in guide section of 10-3/4 inch casing. 45
Photo 22: 10-inch back-off sub for 10-3/4 inch casing.. 46
Photo 23: LHT adaptor for 10-inch back-off sub.. 47
Photo 24: Centralizers for 10-3/4 inch casing inside 16-inch casing............................ 47
Photo 25: Mockup of centralizers for 10-3/4 inch casing inside 16-inch casing........ 48
Photo 26: Welding cement shoe to bottom of production casing................................. 49
Photo 27: Seat and seal for rotating well head to shut in compressed air...................... 51
Photo 28: Seal engaged and locked on rotating well head.. 51
Photo 29: 16-inch steel diversion line to cyclone... 52
Photo 30: 16-inch steel diversion line to cyclone... 52
Photo 31: Cyclone on mud pit with 10-inch inlet pipe from site, 8-inch discharge pipes to shale shakers on bottom and 16-inch vent pipe on top... 53
Photo 32: 10-inch dump line for air rotary drilling and pumping tests........................... 54
Photo 33: Night operation 10/2/2012 with fog off warm water obscuring cyclone......... 55
Photo 34: Intact cyclone with plumbing... 56
Photo 35: Initial cyclone failure... 56
Photo 36: Second video frame... 57
Photo 37: Third video frame.. 57
Photo 38: Damaged shale shakers.. 58
Photo 39: Buckled mud pit floor grate around 16-inch vent pipe.................................. 58
Photo 40: Edge of ½-inch thick steel cyclone lid and broken weld............................... 59
Photo 41: Cyclone lid after failure caused by surge pressure... 59
Photo 42: Water column starting to discharge out of well as displaced by air bubble. 61
Photo 43: Air and water mixture after water column displaced out of well.................. 61
Photo 44: Stainless steel tubing for packer inflation.. 78
Photo 45: Pumping truck with horizontal radiator, V-16 motor, driveline and pump... 79
Photo 46: Frac tanks connected to mixing truck, bulk acid trucks in background........ 79
Photo 47: Mixing truck outlet hoses to manifold.. 80
Photo 48: Manifold linking mixing truck to pumpers and pumpers to well............... 80
Photo 49: Low-pressure inlet hoses and high-pressure steel lines to and from pumpers... 81
Photo 50: Two high-pressure steel lines to 7-inch tubing to packer in well.................. 81
Photo 51: Two pressure transducers used to record surface treatment pressure.......... 82
Photo 52: Overview of acid-frac equipment with control truck in foreground.......... 82
Photo 53: Interior of Maverick Stimulation Services pumping control truck........... 83
Photo 54: 2400 feet, porous rock... 90
Photo 55: 2412 ft, porous rock. ... 90
Photo 56: 2430.5 ft, low porosity rock. 90
Photo 57: Post frac 2400 feet. .. 90
Photo 58: Post frac 2412 feet. .. 90
Photo 59: Post frac 2430.5 feet. .. 90
Photo 60: 2435 ft, low porosity rock. 91
Photo 61: Pre-frac 2465, solid rock. 91
Photo 62: 2480 ft, low porosity rock. 91
Photo 63: Post-frac 2435 feet. ... 91
Photo 64: Post-frac 2465. .. 91
Photo 65: Post-frac 2480 ft. ... 91
Photo 66: 2482 ft, solution cavity. ... 92
Photo 67: 2500, tight fracture in rock. 92
Photo 68: 2502.9 ft, large void. ... 92
Photo 69: Post-frac 2482 ft. ... 92
Photo 70: Post-frac 2500 ft. .. 92
Photo 71: Post-frac, 2502.9 ft. ... 92
Photo 72: 2530 ft, tight fracture in rock. 93
Photo 73: 2550 ft, porous rock. ... 93
Photo 74: 2552 ft, near open fracture. 93
Photo 75: Post-frac 2530 ft. .. 93
Photo 76: Post-frac 2550 ft. .. 93
Photo 77: 2552 ft, vertical fracture. .. 93
Photo 78: 2563.7 ft, large void. .. 94
Photo 79: 2573.7 ft, large void ... 94
Photo 80: 2602.3 ft, large void. .. 94
Photo 81: Post-frac 2563.7 ft. .. 94
Photo 82: Post-frac 2573.7 ft. .. 94
Photo 83: Post-frac 2602.3 ft. .. 94
Photo 84: 2624 ft, low porosity. ... 95
Photo 85: 2637.5 ft, fracture-tight rock. 95
Photo 86: 2646.1 ft, low porosity rock. 95
Photo 87: Post-frac, 2624 ft. .. 95
Photo 88: 2637.5 ft, fracture-tight rock. 95
Photo 89: Post-frac, 2646.1 ft. .. 95
Photo 90: 2669.7 ft, porous rock. ... 96
Photo 91: 2697.1 ft, porous rock. .. 96
Photo 92: 2749.6 ft, vertical fractures. 96
Photo 93: Post-frac 2669.7 ft. ... 96
Photo 94: Post-frac 2697.1 ft. ... 96
Photo 95: Post-frac 2752.7 ft... 96
Photo 96: Overview of Test Well #2A pumping test layout on 10/21/2012........ 106
Photo 97: VFD secondary transformer data plate.. 107
Photo 98: Motor assembly hanging from pump truck.................................. 108
Photo 99: Coupling between oil seal (upper part) and motor (lower part). 108
Photo 100: Mounting plate for motor-to-pump connection.............................. 109
Photo 101: Pump with riser pipe hanging above motor suspended in top of well... 109
Photo 102: Pump mounting plate on motor prior to attachment to inlet section on pump. ... 110
Photo 103: Motorized cable reel for pump motor electrical cable................. 110
Photo 104: Bottom of three PVC standpipes used for well instrumentation........ 111
Photo 105: Pump column and standpipe installation................................... 111
Photo 106: Installation of 10-inch steel discharge pipe................................. 112
Photo 107: 10-inch discharge pipe with butterfly valve and flow meter............ 112
Photo 108: Well head with standpipes, two pressure transducers, water level indicator, airlines and armored electrical motor cable passing through support plate... 113